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Structural color based on Fabry–Perot (F-P) cavity enables a wide color gamut with high resolution at submicro-
scopic scale by varying its geometrical parameters. The ability to design such parameters that can accurately
display the desired color is therefore crucial to the manufacturing of F-P cavities for practical applications.
This work reports the first inverse design of F-P cavity structure using deep learning through a bidirectional
artificial neural network. It enables the production of a significantly wider coverage of color space that is over
215% of sRGB with extremely high accuracy, represented by an average ΔE2000 value below 1.2. The superior
performance of this structural color-based neural network is directly ascribed to the definition of loss function in
the uniform CIE 1976-Lab color space. Over 100,000 times improvement in the design efficiency has been dem-
onstrated by comparing the neural network to the metaheuristic optimization technique using an evolutionary
algorithm when designing the famous painting of “Haystacks, end of Summer” by Claude Monet. Our results
demonstrate that, with the correct selection of loss function, deep learning can be very powerful to achieve
extremely accurate design of nanostructured color filters with very high efficiency. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.415141

1. INTRODUCTION

Structural color filters can display various colors by selectively
transmitting or reflecting a specific wavelength by varying
structural parameters rather than material components in the
visible region [1]. They have received enormous interest re-
cently due to their potential applications in chromatic display
[2,3], color printing [4,5], optical encryption [6,7], solar cells
[8], and so on. They largely exceed the conventional colorant-
pigment-based filters in multiple aspects including nontoxicity,
great scalability and durability, high resolution, and easy
tenability [9]. Generation of structural color normally employs
resonances (e.g., plasmonics, Mie scattering, guided mode res-
onance) from subwavelength patterns [10–13]. However, all
these require nanoscale patterning, which involves complicated
fabrication steps and can be cost prohibitive for high-volume
and large-area applications.

Planar thin-film structures based on Fabry–Perot (F-P) cav-
ity resonances are an alternative structural color filter technol-
ogy based on the thin-film interference [14]. A typical F-P

resonator consists of a lossless dielectric that is sandwiched
between two reflective metal layers. The function of color filter-
ing is achieved by multiple round-trip phase delays of electro-
magnetic waves in the F-P resonator [15]. The resonant peak
location can therefore be controlled by varying the dielectric
layer thickness to obtain different colors. The full width at
half-maximum (FWHM) of the peak, which relates to the color
purity and brightness, can be tuned through the two metal layer
thicknesses. Compared with the pattern-based filters, F-P-
cavity-based structural color offers a much lower-costing and
higher-scalability way of structural color manufacturing while
offering larger color gamut and high color purity and contrast
[16]. The high-index materials of phase compensation over-
layers can also achieve great angle insensitivity for both trans-
verse-magnetic (TM) and transverse-electric (TE) polarizations
[17]. There are several works published on the aspect of im-
proving the performance of F-P cavity-based structural color
in both transmissive and reflective modes [18–20]. In addition,
the F-P-cavity-based color filter also demonstrates high lateral
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resolution. Wang et al. reported that its color crosstalk is com-
parable to those of plasmonic filters and pigmented filters with
the same sizes [4]. A minimum pixel dimension of 500 nm (ca.
50,800 dpi) has also been successfully demonstrated, showing a
great potential for F-P-cavity-based color filters to be applied in
high-resolution colorization.

An important aspect for structural color is the ability to
design a structure that can accurately display the desired color
[21]. This conventional design task is realized by a trial-
and-error method in which an initial random design is con-
verged to the desired design through iterative optimization.
Identification of a reasonable design therefore often requires an
experienced designer with prior knowledge of the problem and
a significant amount of calculations or simulations, which
could be prohibitively slow as the complexity of the structure
increases. However, this paradigm has recently been changed
by the unprecedented development of deep learning techniques
[21–23].

Deep learning is an important subset of machine learning in
which multilayered artificial neural networks are utilized to
achieve high-accuracy predictions and classifications [24].
Several works have been reported recently in which neural net-
works were used to inversely design the nanostructure and
material to achieve desired optical responses [25–31]. Before
the networks can perform the intended functions, a training
process needs to take place in which a dataset of structural
parameters to color relations is required. This dataset normally
involves a large amount of relations, and it needs to be
generated by theoretical calculation or simulation. However,
this is a one-time investment, and no more computational re-
sources will be consumed once the network is properly trained.
Pioneering works have also been reported on deep-learning-
aided structural color design [32–36]. Hemmatyar et al. de-
signed and optimized the hafnia array based all-dielectric
metasurfaces via neural network to generate a wide color gamut
[32]. Gao et al. reported a structural color inverse design by
employing a bidirectional neural network [35], which was first
proposed by Liu et al. [37]. The model consists of a fully con-
nected inverse network that directly connects to a pretrained
forward network. The inverse network can produce the design
of the structural parameters for desired colors, while the for-
ward network predicts the colors from the structural parameter
inputs. The training of the inverse network is conducted by
feeding the inversely designed structures directly into the pre-
trained forward network, and the network is optimized by min-
imizing the difference between the predicted color and the
input color through backpropagation. This model has been
widely used in different nanophotonic applications, as it over-
comes the issue of nonuniqueness [31,38,39].

Although previous works have achieved remarkable progress
in the structural color inverse design, one remaining challenge
is the relatively low design accuracy (large color differences be-
tween design and target) even when extremely low validation
loss is achieved. One key reason for that is the nonuniformity of
the color space from which the loss function was defined. The
loss function measures the difference between the network pre-
dicted value and the true value in the dataset. It is crucial for
neural networks, as the training is a process of minimizing the

loss function [40]. An unsuitable selection of loss function may
lead to a very low loss function but relatively higher prediction
error [41]. Defining loss function in a nonuniform color space
such as CIE 1931-XYZ means the same Euclidean distance
among the XYZ vectors may signify different color differences,
resulting in biased optimization against some colors [42].

Here we report, to the best of our knowledge, the first in-
verse design of F-P cavity structure using deep learning through
a bidirectional artificial neural network. This structure enables
the production of a significantly wider color gamut that is over
215% of sRGB color space, which is essential for real display
applications. By defining the training loss function in the uni-
form CIE 1976-Lab color space where the same Euclidean dis-
tance indicates same color difference, our network is able to
achieve a much higher design accuracy with average color dif-
ference ΔE2000 below 1.2. The high design efficiency of the
network is also evaluated by comparison to the evolutionary
algorithm, which shows over 100,000 times savings of compu-
tational resources. The demonstration of this work offers excit-
ing prospects for deep learning techniques to be used to achieve
accurate and efficient structural color designs for a wide range
of different applications.

2. DATASET GENERATION

The schematic diagram of the transmissive F-P-cavity-based
color filter employed in this work is illustrated in Fig. 1(a).
A transmissive-type of color filter was chosen because of its
wide application in spectrometers, CMOS image sensors, and
liquid crystal displays [43–45]. Compared with reflective filters,
transmissive filters enjoy the advantages of single-mode oper-
ation, which could lead to a higher color purity. However, it
is worth mentioning that a similar approach can also be used
on the reflective type. The system has a trilayer metal-insulator-
metal (MIM) films stack on the quartz substrate in which a
SiO2 dielectric layer is sandwiched between two Ag metal
layers. Optical interference occurs when white light enters
the cavity which filters out the wavelengths that are not match-
ing the resonant wavelength of this multilayer system. With the
materials of the dielectric and metal layers fixed, the most criti-
cal parameters here affecting the resonant wavelengths are the
thickness of each layer, which are represented as d 1, d 2, and d 3

as shown in Fig. 1(a). In this work, the ranges of d 1, d 2, and d 3

are set to be 0 to 50 nm, 0 to 1000 nm, and 0 to 50 nm to allow
a large color gamut coverage. Only integer values are selected
in this work to ensure the compatibility with fabrication tech-
niques. A total of 101,000 parameter combinations are ran-
domly generated, and the corresponding transmissive spectra
from 380 to 780 nm are computed by the multiple beam in-
terference formulas [16]. However, color is not a property of
electromagnetic radiation but a subjective perception of an
observer. Color-matching functions are then required to con-
vert the transmissive spectra into corresponding color coordi-
nates in CIE 1931-XYZ color space to generate a dataset
containing 101,000 parameters D �d 1, d 2, d 3� to color XYZ
�X ,Y ,Z � relations. This dataset is divided into three groups for
training (90,000), validation (10,000), and testing (1000) pur-
poses. All colors generated in the training and validation data-
set are plotted in the CIE 1931-xy chromaticity diagram in
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Fig. 1(b). It is clear that our Ag-SiO2-Ag F-P-cavity-based color
filter in this work can achieve a substantially larger (ca. 215%)
color gamut than the sRGB color space (plotted by red lines for
reference). The large gamut of coverage is one of the advantages
of F-P-cavity-based structural color and is particularly beneficial
for real applications such as display and full-color nanoprinting
[4,19]. By varying the thickness of the dielectric layer (d 2), the
transmission peak could be swept across the whole color in the
visible light range. The modification of the Ag layer thicknesses
(d 1 and d 3) serve to further tune the FWHM of the transmit-
tance peak, resulting in a large gamut of coverage. The testing
dataset is plotted in Fig. 1(c) (referred to as the testing set be-
low). To further test the robustness of our networks, we also
generated an additional testing set with 7000 colors that are
uniformly distributed on the CIE 1931-xy chromaticity dia-
gram [shown in Fig. 1(d) and referred to as the uniform testing
set below].

3. FORWARD NEURAL NETWORK
CONSTRUCTION

A forward neural network (FNN) was first trained to obtain
accurate prediction of colors based on the layer thicknesses.
Prior to training, a loss function needs to be established.

Although our original dataset converts the spectrum into a
CIE 1931-XYZ tristimulus vector, it is not a suitable output
for loss function definition due to its nonuniformity [42].
sRGB color space is also not ideal, as the conversion between
XYZ and sRGB is not reversible when the color is outside of
the sRGB color space. On the other hand, the CIE 1976-Lab
color space has a one-to-one correspondence to the CIE 1931-
XYZ but with much better uniformity, rendering it a more suit-
able color space for accurate color difference identification. In
fact, the color difference function CIE ΔE1976 is defined by the
Euclidean distance of two Lab vectors �L, a, b�. This property is
particularly beneficial in neural network training. By defining
the loss function to be mean squared error (MSE) between the
predicted and original Lab values, it can be directly converted
to the actual color difference (ΔE1976) and enable higher accu-
racy. Figure 2(a) shows the summary of the dataset preparation
process for the FNN. After obtaining XYZ from the spectrum,
it was converted to Lab, which was then used to construct the
loss function and identify color difference. The architecture of
the FNN is illustrated in Fig. 2(b) and is composed of a fully
connected neural network (NN) including one input layer, one
output layer, and several hidden layers. It takes the parameterD
as input and outputs the Lab, which can be converted to other
color vectors such as XYZ and sRGB for different applications.

Fig. 1. (a) Schematic illustration of a transmissive F-P-cavity-based color filter with an MIM structure. (b) The training and validation dataset
generated by the F-P cavity plotted in a CIE 1931-xy chromaticity diagram. The red triangle depicts the boundary of sRGB color space for a guide of
the eye. (c) The original 1000 testing data and (d) the 7000 uniformly distributed testing data plotted in the CIE 1931-xy chromaticity diagram.
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During the deep learning process, the training data group is
fed to the FNN to continuously adjust the weight and bias of
each connection with every batch of data in epochs. This is
achieved by backpropagation of the loss function. The selection
of the hyperparameters (i.e., number of hidden layers and neu-
rons per layer) is crucial to the performance of the network
[21]. A systematic study was therefore conducted to investigate
the impact of hyperparameters for this FNN. The CIE ΔE2000

color difference was chosen here to provide a better quantifi-
cation of the FNN performance. Similar to the ΔE1976, the
ΔE2000 color difference is also a function of the two Lab values
but corresponds better with the way in which human observers
perceive small color differences and hence is used as the metric
for design accuracy in this work [46]. The ΔE2000 can be clas-
sified into five groups: 1) ΔE2000 < 1, it can be considered
no color difference; 2) 1 < ΔE2000 < 2, the difference can
be observed by experienced persons; 3) 2 < ΔE2000 < 3.5,
the difference can be observed by unexperienced persons;
4) 3.5 < ΔE2000 < 5, a clear difference can be noticed; and
5) 5 < ΔE2000, two different colors are observed [47]. The dis-
tribution of ΔE2000 from the testing set of each FNN is plotted
in Fig. 3(a) as a function of layer number. It provides a clear
indication on the color prediction performance of each FNN.
The average ΔE2000 values (blue squares) can therefore be used
to provide a quantified metric for the performance. It can be
observed that the average ΔE2000 in the testing set decreases
from 1.87 with two hidden layers to 0.44 with seven hidden

layers, indicating that the FNN with seven hidden layers has
the best performance in our optimization range. The impact
of number of neurons per layer was also investigated while
the number of layers was fixed at seven.

Similar to the optimization of hidden layer numbers, the
ΔE2000 distribution and average values are plotted in Fig. 3(b).
The average ΔE2000 in the testing set plunged sharply from
3.05 to 0.44 with the increase of neuron number from 10
to 50 and subsequently bottomed out at 0.38 for 250 neurons.
Therefore, the architecture of the FNN is optimized with seven
hidden layers and 250 neurons in each hidden layer. The in-
fluence of the dataset size was also investigated as shown in
Fig. 3(c). The results suggest that sufficient dataset size (over
50,000 in our case) is required for the network to achieve a
good performance of an average ΔE value below 0.5 in
our case.

The high accuracy of our FNN is further confirmed by
evaluation using the uniform testing set, resulting in a
ΔE2000 of 0.35. We believe this high accuracy can be ascribed
to the use of uniform CIE 1976-Lab color space for the net-
work training. An FNN with the same network architecture
using XYZ as the output was also trained for comparison as
shown in Figs. 3(d) and 3(e). Although a lower MSE (ca. 10−6)
was achieved by the FNN with XYZ output, the ΔE2000 dis-
tribution is significantly poorer than the one with Lab output
with a decrease of ΔE2000 values observed from 1.03 to 0.38.
To better explain the advantage of our approach, Fig. 3(f )

Fig. 2. Forward neural network for predicting F-P cavity structural colors. (a) The relationships of different parameters in the dataset. The single
arrow means the transformation is unidirectional, the double arrow means the transformation is reversible. (b) The architecture of the forward neural
network with input layer of geometric parameter D, hidden layers, and output layers of Lab color values.
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presents a selection of colors in the CIE 1931-xy chromaticity
diagram with the boundary of each ellipse representing the col-
ors that have a ΔE1976 of 6 to the selected color. It is clear that
the ellipses in the green and red regions are larger than that in
the blue region due to the nonuniformity of the CIE 1931-XYZ
color space. One could obtain a very small ΔXYZ in the green
region, but the actual reduction of color difference might be
limited. This suggests that minimizing ΔXYZ values, especially
in the green and red regions, will not be as effective in reducing
color difference as the approach suggested in our work. This
proves that the correct selection of loss function is critical to
the performance of the neural network.

4. INVERSE NEURAL NETWORK
CONSTRUCTION

The training of the inverse neural network (INN) is more chal-
lenging due to the nonuniqueness nature that one color can be
formed by different F-P cavity structures. This multisolution
property could lead to the adjustment of weight being pulled
to different local or global minima during the training process,
making the training difficult to converge. The bidirectional
neural network architecture and tandem training strategy were
therefore employed in this work in which the output parameter
D 0�d 0

1, d
0
2, d

0
3� from the INN was directly fed into our pre-

trained FNN to generate predicted Lab 0�L 0, a 0, b 0� as shown
in Fig. 4(a). The parameters of FNN are fixed during the
INN training. The loss function can be defined as the MSE
between the original and predicted Lab vectors instead of
parameter D. This means the INN will be optimized to match
the desired color rather than the structure, avoiding the non-
uniqueness problem in the training process. Here we adopted a

recently reported penalized tandem training strategy to further
enhance the robustness of the network in the initial 100 epochs
[39], which indicates that the inverse error (the MSE between
the original D and predicted D 0) was included in the loss func-
tion for the first 100 epochs to avoid the predictions violating
the ground truth of D.

Another important factor in INN training is the selection of
a random seed. The initial weights are obtained from random
sampling using determined distributions (e.g., Xavier or
Kaiming initialization). The training is therefore repeatable
once the selection of a random seed was fixed. Different ran-
dom seeds could place the INN at different starting positions in
the loss plane [Fig. 4(b)]. In the case of multiple solutions, the
loss plane is very complicated due to the interference of differ-
ent global or local minima [Fig. 4(c), left]. Different starting
positions could cause the INN to converge into a different lo-
cal/global minimum, or in the case of a poor initialization,
struggle to even converge. Selection of the random seed there-
fore plays a vital role in the INN training process. In this work,
each INN underwent a process of random seed selection before
hyperparameter optimization took place. The summary of the
MSEs after 200 training epochs for INNs with varying hidden
layers is presented in Fig. 4(d). It is obvious that the training
progress differs significantly due to the selection of different
random seeds, and different INN architectures prefer different
random seed groups for optimized performance. This is par-
ticularly important for multisolution questions with the exist-
ence of a large number of local and global minima. It is less
critical for single-solution questions (e.g., the FNN in this
work), as the loss plane is relatively simple for the network
to converge [Fig. 4(c), right] regardless of the initial starting
position.

Fig. 3. Forward neural network training for predicting F-P cavity structural colors. The histogram of the probability and average values of ΔE2000

of the FNNs with different (a) hidden layer number, (b) neuron number per layer, and (c) the FNN with seven hidden layers and 250 neurons in
each hidden layer for different dataset size. (d) The training loss curves for defining the loss function in CIE 1931-XYZ and CIE 1976-Lab color
spaces. (e) The probability histogram and average values of ΔE2000 comparisons while the loss function is defined in CIE 1931-XYZ color space and
CIE 1976-Lab color space. (f ) The selected colors in the CIE 1931-xy chromaticity diagram with the boundary of each ellipse representing the colors
that have a ΔE1976 of 6 to the selected color.
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Figures 4(e) and 4(f ) present the optimization of hidden
layer numbers for INN. A drop of MSE at the 100th epoch
in each training is due to the removal of the inverse error term
in the loss function as mentioned above. Unlike the FNN
where higher network complexity always leads to a better per-
formance in the training set, a reduction of performance was
observed for the INN with more than five layers. This inferior

performance for more complicated INNs may be caused by the
increased dimensions in the loss plane and number of existing
global minima, which causes the network convergence to be
more difficult. Similar behavior was also observed in the process
of neuron number optimization as shown in Figs. 4(g)–4(i). A
final INN with five hidden layers with 100 neurons was iden-
tified to be the best INN architecture to be used in this work.

Fig. 4. Inverse neural network for predicting F-P cavity structural colors. (a) The bidirectional architecture with input layer of Lab values and
output layer of geometric parameterD and connected to the pretrained forward neural network. (b) The schematic of different weights’ initialization
positions. (c) The loss surface schematics of nonuniqueness (left) and uniqueness (right) problems, respectively. The MSEs after 200 epochs as a
function of random seed, the training loss curves, the histogram of the distribution, and average values of ΔE2000 of the INNs with (d)–(f ) different
numbers of hidden layers and (g)–(i) different numbers of neurons per layer.
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This network enables the average ΔE2000 of 1.16 in the non-
uniform testing set and 1.18 in the uniform testing set, which
are superior to most of the commercial display equipment. For
example, the high-end Dell UltraSharp 32 PremierColor
UltraHD 8K Monitor is factory calibrated at 100% sRGB cov-
erage to an accuracy of ΔE2000 less than 2.

5. PERFORMANCE EVALUATION

To better evaluate the performance of our INN, we randomly
selected 6 F-P cavity structures (D values) that the INN has
never seen before, as listed in Table 1. These structures were
converted to the corresponding spectra and subsequently Lab
values as discussed previously. The target Lab values were then
fed into our INN to obtain the designed structures D 0. Further
tests by converting the designed structures to designed colors
through the theoretical calculation have resulted in very close
matches with the targeted colors. The color differences, repre-
sented by the ΔE2000 values, are below 1 in all six cases, sug-
gesting that human eyes are not able to distinguish their
differences. More importantly, in five of the six cases, our

INN has produced designed structures that are significantly dif-
ferent from the original to the targeted structures while
obtaining small color difference. This demonstrates the exist-
ence of nonuniqueness solutions for INN. More importantly, it
highlights the ability of a neural network to discover solutions
outside of the boundaries of the training data. Nanophotonic
research has become more computation intensive due to the
large spatial degrees of freedom and wide choice of materials
[22]. Such ability to identify new design structures that can
never be found through a conventional forward design tech-
nique would be extremely beneficial for discovering novel find-
ing in nanophotonics.

The excellent performance of our network is further sup-
ported by designing the F-P cavity structures to reproduce
the painting of “Haystacks, end of Summer” by Claude
Monet. This was done by extracting the sRGB values of all
2000 × 1176 (2,352,000) color pixels from the original paint-
ing [shown in Fig. 5(a)] and inputting them into the bidirec-
tional network. The INN outputs the designed geometric
parameters for all 2,352,000 pixels, and the reconstructed
paintings were subsequently generated and plotted in Fig. 5(b).

Table 1. Comparison of the Six Randomly Selected Target Structure D, Lab, and sRGB
Color Values with the Corresponding Values Inversely Designed by the Inverse Neural
Network

Target
D (nm)

Target sRGB
Target

Lab
Design
D (nm)

Design
Lab

Design
sRGB

E

31-365-31
142-27-80
142-27-80

32-365-30
141-28-79
141-28-79

0.27

44-152-11
95-67-59
95-67-59

43-345-15
96-68-55
96-68-55

0.70

29-141-12
163-142-97
163-142-97

25-336-15
164-142-96
164-142-96

0.37

29-121-26
(-600)-165-114
0-165-114

23-293-20
(-605)-165-113
0-165-113

0.25

20-385-44
89-(-44)-110
89-0-110

41-387-23
89-(-45)-109
89-0-109

0.18

19-839-18
44-140-166
44-140-166

24-271-5

L: 32.0
a: 50.2
b: -1.7

L: 31.8
a: 49.6
b: -1.4

L: 31.2
a: 10.7
b: 11.7

L: 31.5
a: 10.4
b: 12.4

L: 59.8
a: 1.7
b: 26.8

L: 60.0
a: 1.6
b: 27.5

L: 56.4
a: -84.2
b: 11.0

L: 56.5
a: -84.8
b: 11.5

L: 16.9
a: 61.8
b: -46.0

L: 16.9
a: 62.0
b: -45.7

L: 54.2
a: -19.9
b: -21.6

L: 54.3
a: -19.1
b: -21.2

44-141-166
44-141-166

0.29

Fig. 5. Actual application of the INN-based structural color design. (a) The origin and (b) the reproduction via INN of the painting “Haystacks,
end of Summer” by Claude Monet. Reproduction of “Haystacks, end of Summer” is permitted by the Musée d’Orsay, Paris (RF 1975 3).
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An extremely high accuracy can be clearly observed, as the dif-
ference between the two images is almost undistinguishable.
This proves the robustness and accuracy of our network in
designing colors over a wide gamut.

We will now provide a detailed analysis of the network per-
formance by evaluating the spectra of the blue (sRGB 0, 0,
102), green (sRGB 0, 102, 0), and red (sRGB 102, 0, 0) color
filters designed by our INN. The designed F-P cavity for blue

color has a dielectric thickness (d2) of 424 nm, and its trans-
missive spectrum is characterized by a main peak at 465 nm
with a secondary peak at 690 nm as shown in Fig. 6(a-ii).
The contribution from each CIE 1931-RGB spectral tristim-
ulus is demonstrated by the size of the shades underneath the
spectrum. It is obvious that the designed blue color consists of a
majority of blue stimuli with a small proportion of green and
red stimuli, the integrals of which are extremely close to the

Fig. 6. Transmissive spectra and corresponding CIE 1931-RGB tristimulus values for the designed colors. The transmissive spectra (black line)
and the contribution from the three stimuli (shades underneath the line) for the (i, ii, iii) blue, (iv, v, vi) green, and (vii, viii, ix) red color designed by
the INN in this work. Within each figure, the middle row figure presents the original design, while the top and bottom figures represent the spectra
from a 10 nm thinner layer and a 10 nm thicker dielectric layer. (b) The CIE 1931-RGB tristimulus values as a function of dielectric layer thickness
for the blue, green, and red colors, respectively. The CIE 1931-RGB tristimulus values of the targeted colors are also included (dotted lines) for
comparison.
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definition of blue color in the sRGB color space [shown by the
dashed line in Fig. 6(b-i), and the corresponding CIE 1931-
RGB tristimulus values can be obtained by converting the
CIE 1931-XYZ tristimulus]. Almost identical values are ob-
tained with a ΔE2000 of 0.07. An unoptimized design with
a dielectric layer 10 nm thinner will cause a blueshift of the
spectrum [Fig. 6(a-i)]. This results in an increased contribution
from the red stimuli but a reduced contribution from the green
stimuli, driving the designed color away from the blue defini-
tion with a ΔE2000 of 6.16. Similarly, a 10 nm thicker dielectric
layer induces a redshift with more contribution from green
stimuli and less contribution from red stimuli, resulting in a
ΔE2000 of 11.83. Similar behavior is also observed on the de-
sign of green color as shown in Fig. 6(a-iii). Our design with a
dielectric thickness (d 2) of 326 nm results in a ΔE2000 of 0.35
[Figs. 6(a-v) and 6(b-ii)], whereas a �10 nm change of the
thickness alters the contribution from the CIE 1931-RGB tri-
stimulus and results in inferior color design with ΔE2000 of
7.72 (d 2 − 10 nm) or 11.83 (d 2 � 10 nm) as shown in
Fig. 6(a-iv/vi). It is clear that our network is able to identify
the optimized thickness that places the spectrum in the right
position to achieve minimum difference from the desired color.

It is also worth pointing out the limitation of our network,
which is manifested in the design of the red color. The network
selects a design with d 2 of 369 nm, which uses the second-order
peak at 595 nm, resulting in a ΔE2000 of 8.93 [Fig. 6(a-viii)].
Although it outperforms the other two scenarios with�10 nm
of d 2 [ΔE2000 of 20.21 and 19.64, respectively, shown in
Fig. 6(a-vii/ix)], it fails to select the first-order peak, which
could realize a much better design by using a smaller thickness
(d 2 ∼ 160 nm). This suggests that the network is not flexible
enough when a large change of thickness is required. This may
be attributed to two factors. The first factor is the uneven color
distribution of the training dataset caused by the nonlinear
relation among thickness, spectrum, and color. The resonant
cavity lengths in the F-P cavity are close to the positive integer
times of λ∕4n, where n is the refractive index of the dielectric
layer and λ is the light wavelength in free space. The wave-
lengths of blue (∼490 nm) and green (∼550 nm) are shorter
than that of the red (∼610 nm). Higher-order blue and green
peaks therefore appear more frequently than red within the
same dielectric layer range. Hence, colors near the red region
are significantly under-represented. This leads to the network
being trained in favor towards optimization of colors in the
blue and green regions. The second factor lies in the inherent
limitation with tandem network architecture, which suffers
from mode collapse [23]. The high-quality first-order red peak
was abandoned by the network during the training process to
achieve a high overall accuracy for all colors. This results in the
red colors being predicted to the higher orders, leading to
limited quality. These two factors are believed to contribute
to the difficulty of designing colors in the red region, and fur-
ther improvements in both the network design and training
process are required to tackle this challenge.

Finally, we evaluate the computational efficiency of our net-
work by comparing it with an evolutionary algorithm—a popu-
lar metaheuristic optimization technique [48]. Compared with
a neural network, an evolutionary algorithm performs better in

the design of red color (details of EA can be found in Section 7).
This forward design process was able to find the first-order red
peak, achieving a ΔE2000 of 0.73. The designs of green and
blue colors are not as good as our INN with ΔE2000 of
1.36 and 1.11, respectively. Moreover, this method demands
much more computational resources than INN and is unprac-
tical in real applications. For example, the time required to de-
sign the painting of “Haystacks, end of Summer” (500 × 297,
148,500 pixels) via our INN was 0.17 s. It took the evolution-
ary algorithm 4.8 h to design the same number of pixels under
the same computational environment (see Section 7, Method).
This translates to over 100,000 times of savings in time and
computational resources for our network. In addition, the over-
all design accuracy for those 148,500 colors obtained from the
network is significantly better (ΔE2000 of 0.78) than that de-
signed by EA (ΔE2000 of 1.18), further proving the superior
performance in both computational efficiency and design accu-
racy of our network.

6. CONCLUSION

In conclusion, we demonstrate the use of a bidirectional neural
network to inversely design the geometric structures of F-P cav-
ity color filters. This work leads to a gamut coverage that is
215% of the sRGB color space. By selecting the uniform
CIE 1976-Lab color space over the conventional CIE 1931-
XYZ color space as the representation of color, the bidirectional
network has shown a superior accuracy for color design with an
average ΔE2000 value below 1.2 in the testing set. This excellent
performance is also verified by comparison with the gradient-
free evolutionary algorithm in which our network demonstrates
a 100,000 times design efficiency improvement with higher ac-
curacy when designing the famous painting “Haystacks, end of
Summer” by Claude Monet. The challenges in designing colors
at longer wavelength due to uneven dataset distribution and the
continuous gradient descent nature of artificial neural networks
are also discussed. This proposed model will contribute to the
establishment of standard procedure for future design of nano-
structured color filters with deep learning technology.

7. METHOD

Data Processing. Before the neural networks are trained, the
datasets are normalized from 0 to 1. By doing this, the effects of
unit, magnitude, and dimension of the dataset are waived,
which is able to improve the performance and probability of
convergence. This process was done by the open-source ma-
chine learning library Scikit-Learn.

Color Conversion. The color conversions, which include
the conversions between different color spaces (e.g., sRGB
to CIE 1931-XYZ and CIE 1931-XYZ to CIE 1976-Lab)
and color difference (ΔE2000), were performed by the open-
source library Colour-Science.

Deep Learning. All the deep learning models and training
were developed and performed on the open-source deep learn-
ing framework PyTorch.

Training Hyperparameters. The training hyperparameters
are listed as follows. Epochs: 2000; batch size: 64; activation
function: ReLU; loss function: mean squared error (MSE); op-
timizer: Adam; learning rate: 0.001; learning rate scheduler:
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MultiStepLR; milestones � �1800,1900� (forward training)
and [1,1800,1900] (inverse training); gamma � 0.1. The
Kaiming uniform initialization method was adopted in this
work to investigate the impact of random seed selection [49].

Loss Functions. In the training of the forward neural
network, the loss function is defined as Lossforward �
MSE�Labpredicted,Labtruth�. In the training of the inverse neural
network, a penalty term in the loss function has been intro-
duced for the first 100 epochs to ensure Dpredicted is not too
far away from the input dimension Dtruth (i.e., reduce the
chance of generating negative values). The penalized loss func-
tion is defined as Lossinverse � MSE�Labpredicted,Labtruth��
0.2 ×MSE�Dpredicted,Dtruth�. The second term in the equation
is a penalty term, which is used to control the inverse output
error compared with the ground truth of the geometric param-
eters. The penalty coefficient λ is set to be 0.2 in our case. After
the 100 epochs, the loss function is defined as Lossinverse �
MSE�Labpredicted,Labtruth�.

Evolutionary Algorithm. The evolutionary algorithm (EA)
is one type of gradient-free optimization method, and it is an
appealing option for solving this optimization problem. It uses
a refined iterative process in which an elite percentage of the
individuals are retained through each iteration, allowing the
samples to genetically evolve until the best option has been
identified. The evolutionary algorithm in this work was realized
by open-source EA library DEAP. The EA generation and
population applied in this work are 100 and 50, respectively.
The EA designed geometrical parameters (d1, d2, d3) are (39 nm,
163 nm, 46 nm) for red (102, 0, 0); (33 nm, 138 nm, 50 nm)
for green (0, 102, 0); and (21 nm, 417 nm, 49 nm) for blue (0,
0, 102). The ΔE2000 are 0.73, 1.36 and 1.11, respectively.

Computational Environment. CPU: Intel Core i9-9900K;
GPU: nVIDIA RTX 2070; RAM: 48 GB; OS: Windows 10
Pro; Python version: 3.7. The same computational environ-
ment was used for the ANN and EA methods in this work.
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